#### September 15, 2022

EMA-2021-BR-005-0054 Town of Hillsborough NC River Pump Station Relocation from Floodway Re National Technical Review

Responses to FEMA's National Technical Review for the above referenced 2021 BRIC subapplication are provided below and justified through reference attachments.

| Information Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Supporting<br>Documentation                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| <ol> <li>The subapplicant states that<br/>the existing<br/>pump station will be<br/>decommissioned after the new<br/>pump station is constructed;<br/>however, this is not explicitly<br/>called out in the project<br/>schedule. The schedule includes<br/>18 months within Phase 2 for<br/>construction of the new pump<br/>station, but it is unclear if this<br/>applies to decommissioning the<br/>existing station, as well.</li> <li>Proposed schedule should be<br/>verified so that the<br/>decommissioning of the<br/>existing pump station is<br/>included.</li> </ol> | The project schedule will be refined as part of Phase 1;<br>however, an updated project schedule has been<br>provided that includes decommissioning of the existing<br>pump station as part of Phase 2: Construction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Attachment A:<br>Updated<br>Schedule, Pg. 3                                                  |
| <ol> <li>The subapplicant provides<br/>multiple preliminary cost<br/>estimates in the supporting<br/>documentation, none of which<br/>match the submitted cost<br/>estimate.</li> <li>Cost estimate should be<br/>verified or amended as<br/>necessary to match supporting<br/>documentation.</li> </ol>                                                                                                                                                                                                                                                                          | The Budget provided as part of the subapplication<br>reflects the engineer's most up-to-date opinion of<br>probable cost for the project. The RPS Preliminary<br>Project Study and Plan, Hillsborough Collection Model<br>Phase 1 Report, and Hillsborough Collection Model<br>Phase 2 Report are preliminary work products, prepared<br>by different engineering firms, and are provided as<br>design and technical references, not as a final<br>subapplication budget. They are not necessarily<br>indicative of the most up-to-date scope of work or<br>budget, which was included in the subapplication.<br>A Budget narrative has been provided, including<br>descriptions of each line item, cost category, quantity,<br>unit, unit price, and total cost. | Attachment B:<br>Budget<br>Narrative, Pg. 7                                                  |
| 3. The as-built schematic shows<br>the pump station experiences<br>nuisance flooding during the<br>10-year storm event with<br>damages beginning to occur at<br>the 25-year event.                                                                                                                                                                                                                                                                                                                                                                                                | The BCA and Technical Memo have been revised with<br>updated stillwater flood elevations near the facility<br>drawn from the North Carolina Flood Risk Information<br>System and FEMA Flood Insurance Study for Orange<br>County, North Carolina. They are provided in the<br>Technical Memo as Figure 3 and Table 5. The BCA,                                                                                                                                                                                                                                                                                                                                                                                                                                    | Attachment C: BCA<br>Technical<br>Memorandum, Pg.<br>12; Attachment D:<br>BCA Report, Pg. 44 |

| The subapplicant states that<br>the recurrence interval steady<br>state elevations were obtained<br>from the Orange County Flood<br>Insurance Study; however, the<br>elevations for the various<br>design storms could not be<br>confirmed when looking at<br>county FIS data.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | including these values, will be refined as part of Phase 1<br>of the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Subapplicant should provide<br>justification for the flood<br>water surface elevation for the<br>25-year storm event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |
| <ul> <li>4. The subapplicant determines<br/>the total service population by<br/>multiplying the average<br/>household size in Hillsborough<br/>by the number of connections<br/>that the River Pump Station<br/>serves. The subapplicant states<br/>that they obtained the value for<br/>average household size from<br/>U.S. Census Bureau data;<br/>however, the input could not<br/>be verified. The total number of<br/>customers served in the<br/>subapplicant's BCA is 12,300.<br/>This is inconsistent with the<br/>value provided in the<br/>supporting BCA narrative,<br/>which states 15,990 customers<br/>served.</li> <li>Documentation to support the<br/>number of customers served<br/>should be provided.</li> </ul> | A letter from Marie Strandwitz, Utilities Director, Town<br>of Hillsborough, has been provided to support the<br>number of connections, 5,000, and the population<br>served, 12,300. A map of the town's sewer<br>infrastructure, including sheds and meters, has also<br>been provided.<br>The BCA Technical Memorandum has been updated to<br>match the number of connections, population served,<br>and the per day service value. The BCA will be further<br>refined as part of Phase 1.<br>US Census Data has been provided to support the<br>average number of persons per household for the Town<br>of Hillsborough, 2019. | Attachment E:<br>Population<br>Served Letter, Pg.<br>49; Attachment F:<br>US Census Data,<br>Pg. 51;<br>Attachment G:<br>Wastewater Map,<br>Pg. 56 |
| 5. The subapplicant states that<br>the relocation of the project<br>will allow for the existing 1.5-<br>acre site to return to its pre-<br>development riparian state.<br>The total acreage listed by the<br>subapplicant appears to be<br>larger than the area currently<br>occupied by the pump station.<br>Documentation to support the<br>total area of improvement for<br>the determinations of the<br>ecosystem benefit should be<br>provided.                                                                                                                                                                                                                                                                                  | A map of the project area with the area of disturbance,<br>including subgrade work, has been provided to show the<br>total area of improvements that will be demolished,<br>decommissioned, and returned to natural riparian<br>functions. This value, too, will be refined following 100%<br>design associated with Phase 1.                                                                                                                                                                                                                                                                                                     | Attachment G:<br>Old River Pump<br>Station Ground<br>Disturbance Map,<br>Pg. 58                                                                    |

# Attachment A. Updated Schedule

|        |                                                          |           |                      |     | 2023 |     |     |     |     |     |     |      |     |     |     |
|--------|----------------------------------------------------------|-----------|----------------------|-----|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
| ITEM # | DESCRIPTION                                              | Duration  | DESCRIPTION Duration | Jan | Feb  | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec |
|        | PHASE 1                                                  |           |                      |     |      |     |     |     |     |     |     |      |     | +   |     |
| 1.1    | Notice of Grant Award                                    | n/a       |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 1.2    | Design Team Contract                                     | 1 Month   |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 1.3    | Assessment, Preliminary Design, and 50% Design Documents | 3 Months  |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 1.5    | Permitting Phase                                         | 6 Months  |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 1.6    | Final Design Documents                                   | 3 Months  |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 1.7    | BCA                                                      | 1 Month   |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 1.8    | Submittal                                                | 1 Month   |                      |     |      |     |     |     |     |     |     |      |     |     |     |
|        | PHASE 2                                                  |           |                      |     |      |     |     |     |     |     |     |      |     | +   |     |
| 2.1    | Bidding and Award                                        | 3 Months  |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 2.2    | Decommissioning of Existing PS                           | 6 Months  |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 2.2    | Construction - PS Flood Mitigation                       | 15 Months |                      |     |      |     |     |     |     |     |     |      |     |     |     |
| 2.3    | Project Closeout                                         | 2 Months  |                      |     |      |     |     |     |     |     |     |      |     | 1   |     |

|        |                                                          |           |     |     |     |     |     | 20  | 024 |     |      |     |     |          |
|--------|----------------------------------------------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|----------|
| ITEM # | DESCRIPTION                                              | Duration  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec      |
|        | PHASE 1                                                  |           |     |     |     |     |     |     |     |     |      |     |     | +        |
| 1.1    | Notice of Grant Award                                    | n/a       |     |     |     |     |     |     |     |     |      |     |     |          |
| 1.2    | Design Team Contract                                     | 1 Month   |     |     |     |     |     |     |     |     |      |     |     |          |
| 1.3    | Assessment, Preliminary Design, and 50% Design Documents | 3 Months  |     |     |     |     |     |     |     |     |      |     |     |          |
| 1.5    | Permitting Phase                                         | 6 Months  |     |     |     |     |     |     |     |     |      |     |     |          |
| 1.6    | Final Design Documents                                   | 3 Months  |     |     |     |     |     |     |     |     |      |     |     |          |
| 1.7    | BCA                                                      | 1 Month   |     |     |     |     |     |     |     |     |      |     |     |          |
| 1.8    | Submittal                                                | 1 Month   |     |     |     |     |     |     |     |     |      |     |     | <u> </u> |
|        | PHASE 2                                                  |           |     |     |     |     |     |     |     |     |      |     |     | +        |
| 2.1    | Bidding and Award                                        | 3 Months  |     |     |     |     |     |     |     |     |      |     |     |          |
| 2.2    | Decommissioning of Existing PS                           | 6 Months  |     |     |     |     |     |     |     |     |      |     |     |          |
| 2.2    | Construction - PS Flood Mitigation                       | 15 Months |     |     |     |     |     |     |     |     |      |     |     |          |
| 2.3    | Project Closeout                                         | 2 Months  |     |     |     |     |     |     |     |     |      |     |     |          |

|        |                                                          |           |     |     |     |     |     | 20  | 025 |     |      |     |     |     |
|--------|----------------------------------------------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
| ITEM # | DESCRIPTION                                              | Duration  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec |
|        | PHASE 1                                                  |           |     |     |     |     |     |     |     |     |      |     |     | +   |
| 1.1    | Notice of Grant Award                                    | n/a       |     |     |     |     |     |     |     |     |      |     |     |     |
| 1.2    | Design Team Contract                                     | 1 Month   |     |     |     |     |     |     |     |     |      |     |     |     |
| 1.3    | Assessment, Preliminary Design, and 50% Design Documents | 3 Months  |     |     |     |     |     |     |     |     |      |     |     |     |
| 1.5    | Permitting Phase                                         | 6 Months  |     |     |     |     |     |     |     |     |      |     |     |     |
| 1.6    | Final Design Documents                                   | 3 Months  |     |     |     |     |     |     |     |     |      |     |     |     |
| 1.7    | BCA                                                      | 1 Month   |     |     |     |     |     |     |     |     |      |     |     |     |
| 1.8    | Submittal                                                | 1 Month   |     |     |     |     |     |     |     |     |      |     |     | —   |
|        | PHASE 2                                                  |           |     |     |     |     |     |     |     |     |      |     |     |     |
| 2.1    | Bidding and Award                                        | 3 Months  |     |     |     |     |     |     |     |     |      |     |     |     |
| 2.2    | Decommissioning of Existing PS                           | 6 Months  |     |     |     |     |     |     |     |     |      |     |     |     |
| 2.2    | Construction - PS Flood Mitigation                       | 15 Months |     |     |     |     |     |     |     |     |      |     |     |     |
| 2.3    | Project Closeout                                         | 2 Months  |     |     |     |     |     |     |     |     |      |     |     |     |

# Attachment B. Budget Narrative

| ITEM                                   | DESCRIPTION                            | COST CATEGORY | QUANTITY | UNIT       | UNIT PRICE                       | TOTAL                            |
|----------------------------------------|----------------------------------------|---------------|----------|------------|----------------------------------|----------------------------------|
| GENERAL CONSTRUCTION REQUIREMENTS      |                                        | •             | •        |            |                                  |                                  |
|                                        |                                        |               |          |            |                                  |                                  |
|                                        | To site equipment, trailers, tools,    |               |          |            |                                  |                                  |
|                                        | and materials at proejct startup,      |               |          |            |                                  |                                  |
| Mobilization                           | and removal at project finish.         | Construction  | 1        | Each       | \$183,000.00                     | \$183,000.00                     |
|                                        | Temporary measures to control          |               |          |            |                                  |                                  |
|                                        | sediment and erosion during            |               |          |            |                                  |                                  |
| Sediment & Erosion Control/Maintenance | construction.                          | Construction  | 1        | Each       | \$87,000.00                      | \$87,000.00                      |
| RIVER PUMP STATION                     |                                        |               |          | •          | 1                                |                                  |
|                                        |                                        |               |          |            |                                  |                                  |
| Clearing and Grubbing                  | To clear site of trees and vegetation. | Construction  | 1        | Each       | \$45,000.00                      | \$45,000.00                      |
|                                        | To ensure a level surface and proper   |               |          |            |                                  |                                  |
| Site Grading                           | drainage.                              | Construction  | 1        | Each       | \$95,000.00                      | \$95,000.00                      |
|                                        | Allows for access to new pump          |               |          |            | 450 000 00                       | 450,000,00                       |
| Roadways & Pavement                    | station.                               | Construction  | 1        | Each       | \$59,000.00                      | \$59,000.00                      |
|                                        | Necessary for pump station site        |               |          | - I        | <i>640.000.00</i>                | ÷ 40,000,00                      |
| Fencing & Gates                        | security.                              | Construction  | 1        | Each       | \$40,000.00                      | \$40,000.00                      |
|                                        | Necessary for submersible pump         |               |          |            |                                  |                                  |
| Excavation & Backfill                  | station wet well construction.         | Construction  | 6690     | Cubic yard | \$102.00                         | \$681,360.00                     |
|                                        | For temporary support during           |               | 0000     |            | \$102.00                         | \$081,500.00                     |
| Sheeting & Shoring                     | excavation.                            | Construction  | 1        | Each       | \$171,000.00                     | \$171,000.00                     |
|                                        |                                        |               |          | Lach       | \$171,000.00                     | \$171,000.00                     |
|                                        | Removal of water from excavated        |               |          |            |                                  |                                  |
| Dewatering                             | area during subgrade work.             | Dewatering    | 1        | Each       | \$23,000.00                      | \$23,000.00                      |
|                                        | For construction of submersible        |               | -        |            | <i><i><i>ϕ</i>_0,000.000</i></i> | <i><i><i>ϕ</i>_0,000.000</i></i> |
| Cast-in Place Concrete                 | pump station and vaults.               | Construction  | 460      | Cubic yard | \$1,626.00                       | \$747,960.00                     |
|                                        |                                        |               |          | ,          |                                  | . ,                              |
| Miscellaneous Metals                   | Metals necessary for pump station.     | Construction  | 1        | Each       | \$90,000.00                      | \$90,000.00                      |
|                                        |                                        |               |          |            |                                  |                                  |
|                                        | Various types of piping necessary      |               |          |            |                                  |                                  |
| Pipe and Fittings                      | within the pump station site.          | Construction  | 1        | Each       | \$150,000.00                     | \$150,000.00                     |
|                                        | Variousl valves/gates typical for      |               |          |            |                                  |                                  |
|                                        | wastewater pump station                |               |          |            |                                  |                                  |
| Valves & Gates                         | construction.                          | Construction  | 1        | Each       | \$149,000.00                     | \$149,000.00                     |
|                                        |                                        |               |          |            |                                  |                                  |
| Submersible Pumps & Controls           | For operation of new pump station.     | Construction  | 4        | Each       | \$175,000.00                     | \$700,000.00                     |

|                                        | Captures and macerates solid waste  |              |                 |                     |                     |
|----------------------------------------|-------------------------------------|--------------|-----------------|---------------------|---------------------|
|                                        | prior to entering pumps to protect  |              |                 |                     |                     |
| Channel Grinders                       | pumps from large solids.            | Construction | 1 Each          | \$182,000.00        | \$182,000.00        |
|                                        | Necessary to remove pumps for       |              |                 | <i>\</i> 102,000.00 | <i>\</i> 102,000.00 |
| Hoisting Equipment                     | maintenance.                        | Construction | 1 Each          | \$22,000.00         | \$22,000.00         |
| Painting                               | Painting new pump station.          | Construction | 1 Each          | \$30,000.00         | \$30,000.00         |
|                                        | Electrical service for new pump     |              |                 | +/                  | +                   |
| Electrical                             | station and equipment.              | Construction | 1 Each          | \$674,000.00        | \$674,000.00        |
|                                        | Provides backup power for new       |              |                 |                     | 1- /                |
| Emergency Generator                    | pump station                        | Construction | 1 Each          | \$119,000.00        | \$119,000.00        |
|                                        | Equipment to monitor and control    |              |                 | , ,                 | . ,                 |
|                                        | the peformance of the new pump      |              |                 |                     |                     |
| Instrumentation                        | station.                            | Construction | 1 Each          | \$89,000.00         | \$89,000.00         |
|                                        | Conveys wastewater around           |              |                 |                     |                     |
|                                        | existing pump station site while    |              |                 |                     |                     |
| Bypass Pumping                         | demolition takes place.             | Construction | 1 Each          | \$200,000.00        | \$200,000.00        |
|                                        |                                     |              |                 |                     |                     |
|                                        | Deconstruct and properly dispose of |              |                 |                     |                     |
| Demolition & Decommissiong of Existing | existing pump station materials and |              |                 |                     |                     |
| Pump Station                           | equipment.                          | Construction | 1 Each          | \$119,000.00        | \$119,000.00        |
| GRAVITY SEWER INFLUENT PIPING          |                                     |              |                 |                     |                     |
|                                        | For temporary support during        |              |                 |                     |                     |
| Sheeting & Shoring                     | excavation of pipe trench.          | Construction | 1 Each          | \$38,000.00         | \$38,000.00         |
|                                        |                                     |              |                 |                     |                     |
|                                        | Removal of water from excavated     |              |                 |                     |                     |
| Dewatering                             | area during subgrade work.          | Construction | 1 Each          | \$63,000.00         | \$63,000.00         |
|                                        | Removal of rock during trenching    |              |                 |                     |                     |
| Rock Excavation                        | for proposed pipe.                  | Construction | 425 Cubic yard  | \$188.00            | \$79,900.00         |
|                                        | Bedding for protection of new       |              |                 |                     |                     |
| Stone Bedding                          | gravity sewer piping.               | Construction | 265 Ton         | \$68.00             | \$18,020.00         |
|                                        |                                     |              |                 |                     |                     |
|                                        | New gravity sewer piping to convey  |              |                 |                     |                     |
| 36" DI Pipe - Protecto 401             | wastewater to new pump station.     | Construction | 700 Linear Foot | \$683.00            | \$478,100.00        |
|                                        | Manholes necessary for              |              |                 |                     |                     |
|                                        | maintenance of new gravity sewer    |              |                 |                     |                     |
| 6 ft dia. Precast Concrete Manholes    | piping.                             | Construction | 5 Each          | \$36,600.00         | \$183,000.00        |

|                                         | Conveys wastewater around               |                             |      |             |              |              |
|-----------------------------------------|-----------------------------------------|-----------------------------|------|-------------|--------------|--------------|
|                                         | existing gravity sewer line during tie- |                             |      |             |              |              |
|                                         | in of new gravity sewer to existing     |                             |      |             |              |              |
| Bypass Pumping                          | gravity sewer.                          | Construction                | 3    | Each        | \$32,000.00  | \$96,000.00  |
|                                         | Connection of existing gravity sewer    |                             |      |             |              |              |
| Intercept Existing Gravity Lines        | to new gravity sewer.                   | Construction                | 3    | Each        | \$18,000.00  | \$54,000.00  |
| FORCE MAIN PIPING                       |                                         |                             |      |             |              |              |
|                                         |                                         |                             |      |             |              |              |
|                                         | Removal of water from excavated         |                             |      |             |              |              |
| Dewatering                              | area during subgrade work.              | Construction                | 1    | Each        | \$134,000.00 | \$134,000.00 |
|                                         | Removal of rock during trenching        |                             |      |             |              |              |
| Rock Excavation                         | for proposed pipe.                      | Construction                | 200  | Cubic yard  | \$190.00     | \$38,000.00  |
|                                         | Bedding for protection of new force     |                             |      |             |              |              |
| Stone Bedding                           | main sewer piping.                      | Construction                | 200  | Ton         | \$75.00      | \$15,000.00  |
|                                         | New force main sewer piping to          |                             |      |             |              |              |
|                                         | convey wastewater from new pump         |                             |      |             |              |              |
|                                         | station to wastewater treatment         |                             |      |             |              |              |
| 20" DL Pipe and Fittings - Protecto 401 | plant.                                  | Construction                | 1900 | Linear Foot | \$458.00     | \$870,200.00 |
|                                         | Necessary to remove air pockets         |                             |      |             |              |              |
|                                         | from force main sewer piping during     |                             |      |             |              |              |
|                                         | operation of pumps, to ensure           |                             |      |             |              |              |
| Air Release Valve Assemblies            | proper flow in force main.              | Construction                |      | Each        | \$11,333.00  | \$33,999.00  |
|                                         |                                         |                             | 5    | Each        | \$11,555.00  | \$55,999.00  |
|                                         | There is an existing pipe bridge        |                             |      |             |              |              |
|                                         | crossing the Eno River that will be     |                             |      |             |              |              |
|                                         | maintained for the force main           |                             |      |             |              |              |
|                                         | crossing to the wastewater water        |                             |      |             |              |              |
|                                         | treatment plant. Some bridge            |                             |      |             |              |              |
|                                         | modifications are necessary for         |                             |      |             |              |              |
|                                         | installation of the new 20" force       |                             |      |             |              |              |
| Modifications to Existing Pipe Bridge   | main piping.                            | Construction                | 1    | Each        | \$195,000.00 | \$195,000.00 |
| CONSTRUCTION CONTINGENCY                |                                         |                             |      | 1           | +            | +            |
|                                         |                                         |                             |      |             |              |              |
|                                         | Contingency to cover unexpected         |                             |      |             |              |              |
|                                         | costs that arise from change orders,    |                             |      |             |              |              |
| Contingency                             | field conditions, etc.                  | Contingencies               | 1    | Each        | \$180,006.30 | \$180,006.30 |
| NON-CONSTRUCTION COSTS                  |                                         |                             |      | -           |              |              |
|                                         | Architectural and engineering           | Architectrual & engineering |      |             |              |              |
| Design                                  | services for new pump station.          | fees                        | 1    | Each        | \$437,000.00 | \$437,000.00 |

| Permitting                                | local permits.<br>Capturing soils information to                       | expenses                           | 1    | Each  | \$36,498.00 | \$36,498.00  |  |
|-------------------------------------------|------------------------------------------------------------------------|------------------------------------|------|-------|-------------|--------------|--|
|                                           | benefit the contractor and ensure                                      | Architectrual & engineering        |      |       |             |              |  |
| Environmental, Geotech, & Other Surveying | proper structural design.                                              | fees                               | 1    | Each  | \$75,000.00 | \$75,000.00  |  |
| Construction Procurement                  | Prepare bid documents and procure licensed construction contractor(s). | •                                  | 1    | Each  | \$54,747.00 | \$54,747.00  |  |
| Construction Administration & Resident    | Coordinating and inspecting the                                        | Architectrual & engineering        | 1    | Lacii | \$54,747.00 | ŞJ4,747.00   |  |
| Project Representative                    | contractor's work.                                                     | fees                               | 2500 | Hour  | \$110.00    | \$275,000.00 |  |
| Legal Fees                                | Attorney fees for review of construction and bid documents.            | Administrative & legal<br>expenses | 1    | Each  | \$10,000.00 | \$10,000.00  |  |
|                                           | Pre-award and Phase 1                                                  | Administrative & legal             |      |       |             | · · ·        |  |
| Application Development                   | subapplication development.                                            | expenses                           | 1    | Each  | \$31,000.00 | \$31,000.00  |  |
| TOTAL                                     |                                                                        |                                    |      |       |             |              |  |

# Attachment C. BCA Methodology Technical Memorandum

# Section IV: Cost Effectiveness

# **TECHNICAL MEMORANDUM**

FEMA Building Resilient Infrastructure and Communities Grant Program

Town of Hillsborough, River Pump Station Relocation from Floodway

# **Benefit-Cost Analysis Memorandum**

Revised September 14, 2022

# **Table of Contents**

| 1 | Inti | roductic  | n                                              | 1  |
|---|------|-----------|------------------------------------------------|----|
| 2 | Pro  | posed I   | Mitigation Activity                            | 1  |
|   | 2.1  | Projec    | t and Maintenance Costs                        | 1  |
| 3 | Ber  | nefit-Co  | st Analysis Approach                           | .2 |
|   | 3.1  | Mode      | ed Events                                      | .2 |
|   | 3.2  | Projec    | t Useful Life                                  | .2 |
|   | 3.3  | Softwa    | are and References                             | .2 |
|   | 3.4  | Pump      | Station Vulnerability                          | .2 |
|   | 3.5  | Econo     | mic Value of Wastewater Service                | 3  |
|   | 3.5  | .1 Pop    | ulation Served                                 | 3  |
|   | 3.5  | .2 Valu   | ue of Critical Service                         | 4  |
|   | 3    | 3.5.2.1   | Calculating Critical Service                   | 4  |
|   | 3.6  | Flood     | Recurrence Intervals and Stillwater Elevations | 5  |
|   | 3.7  | Deteri    | nining Losses (Pre-Mitigation)                 | 5  |
|   | 3.7  | .1 Dire   | ect Physical Damages                           | 5  |
|   | 3    | 3.7.1.1   | Building and Contents Replacement Values       | 6  |
|   | 3    | 3.7.1.2   | Depth-Damage Functions                         | 6  |
|   | 3.7  | .2 Los    | s of Function                                  | .7 |
|   | 3    | 3.7.2.1   | Assumptions In Calculating Loss of Function    | .7 |
|   | 3    | 3.7.2.2   | River Pump Station Anticipated Outage          | .7 |
|   | 3    | 3.7.2.3   | Loss of Function - Wastewater Service          | 8  |
|   | 3.7  | .3 Eco    | system Services                                | 8  |
|   | 3.8  | Level     | of Protection (Post-Mitigation)                | 8  |
| 4 | Ana  | alysis Re | esults                                         | 9  |

# 1 Introduction

FEMA requires that all projects funded through the Building Resilient Infrastructure and Communities (BRIC) program are cost-effective and designed to increase resilience and reduce risk of injuries, loss of life, and damage and destruction of property, including critical services and facilities. This technical report documents that the River Pump Station Relocation from Floodway Project submitted by the Town of Hillsborough under the BRIC Fiscal Year 2021 application cycle satisfies applicable cost-effectiveness requirements in compliance with OMB Circular A-94 using FEMA benefit-cost analysis (BCA) methods and tools. The technical memorandum covers the proposed mitigation activity, BCA approach including pre-mitigation and post-mitigation losses, benefits to disadvantaged populations, and analysis results. Analysis documentation also includes a completed FEMA BCA Toolkit Version 6.0, and a BCA Report.

# 2 Proposed Mitigation Activity

As detailed in the application, the Town of Hillsborough proposes to relocate the River Pump Station out of the floodway and Special Flood Hazard Area (SFHA). The proposed location will be outside of the floodway and Special Flood Hazard Area and will allow for the current 1.5-acre site to be returned to riparian space. The relocated pump station will also include a submersible pump design, a cost effective alternative that Town staff have experience maintaining. The consequences of flooding at the facility would result in damage to critical utility assets, loss of wastewater service, potential sewage backup in structures, and discharge of untreated effluent into the environment. A 250-kW permanent generator will be sited and installed along with an automatic transfer switch to ensure a consistent power supply to the station and uninterrupted wastewater pumping in the event of grid power loss.

| Facility Name      | Location Description                  | Latitude, Longitude  |
|--------------------|---------------------------------------|----------------------|
| River Pump Station | Hillsborough, North Carolina<br>27278 | 36.072414, -79.08922 |

Table 1 River Pump Station Location

## 2.1 Project and Maintenance Costs

Table 2 provides total project and annual maintenance costs for implementing the proposed mitigation activity. Project costs were estimated in accordance with FEMA Hazard Mitigation Assistance (HMA) Guidance. Annual maintenance costs include those associated with the following activities:

- Inspection and testing; and
- Minor repairs.

Table 2. River Pump Station Relocation, Project and Maintenance Costs

| Mitigation Activity     | Project Cost   | Annual Maintenance Cost |
|-------------------------|----------------|-------------------------|
| Pump Station Relocation | \$8,051,790.30 | \$5,000.00              |

# 3 Benefit-Cost Analysis Approach

#### 3.1 Modeled Events

In accordance with the FEMA BCA Reference Guide and Supplement, expected loss data may be used to calculate benefits to be used in a BCA. This approach involves calculating losses based on expected flood frequencies. Flood depths and recurrence intervals used in this BCA are taken from an analysis conducted by floodplain managers and engineers to determine the flood elevation for the site. Flood recurrence intervals and stillwater elevations were based on the Orange County, North Carolina Flood Insurance Study (FIS) data for the pump station site. For the purpose of this analysis, four recurrence intervals were determined using modeling methods considered as industry standard and FEMA approved. This is consistent with FEMA's "expected" damages approach as detailed in the FEMA BCA Reference Guide and Supplement.

## 3.2 Project Useful Life

According to the FEMA 2009 BCA Reference Guide – Project Useful Life Table (Appendix B), a project useful life of 50 years should be applied to *Pump Stations, Substations, Wastewater Systems.* As such a useful life of 50 years was used for the River Pump Station Relocation Project in the BCA Toolkit.

#### 3.3 Software and References

The FEMA BCA Toolkit Version 6.0 was used to obtain the Benefit-Cost Ratio (BCR) for the proposed mitigation activities included in the scope of work for the project. The following narrative provides the methodology used to obtain the BCR. Following the FEMA BCA Reference Guide and Supplement, this analysis uses engineering assessment and statistical determinations of likely occurrence and associated damages during expected events. The Damage Frequency Assessment Module (DFA) was used within the FEMA BCA Toolkit to prepare this BCA. The DFA Module is the most appropriate module in the BCA Toolkit for utilities and other critical services, such as wastewater utilities. For the purposes of this analysis, the DFA Module was used to assess the benefits of wastewater service at River Pump Station.

#### 3.4 Pump Station Vulnerability

The River Pump Station is located adjacent to the Eno River, within the floodway and SFHA, Figure 1 shows imagery of the pump station in relation to the river, floodway, and SFHA. The finished floor elevation (FFE) of the pump station is located at an elevation of 495.21 feet NAVD88. During major rainfall events, the Eno River swells and flood elevations have been identified within the pump station reaching well above the first floor elevation. The River Pump Station is currently constructed subgrade and contains the majority of the station's critical electrical equipment including control panels and pump motors which are both located below the 10-year flood recurrence interval as detailed in Figure 2 and Appendix C. Though much of the equipment is located off the floor, severe precipitation events and swelling of the Eno River can cause significant flood elevations within the station impacting the station's ability to function. During flood events, water enters the pump station through conduits and other openings located primarily at (or only slightly above) grade. Once water enters the station, pump motors and supporting equipment can become inundated and fail

completely as experience in 1993, 1996, 1998, 2003. Despite recent drought conditions, the pump station was at near failure again in 2008, 2017, and 2019 (Appendix F).



Figure 1. Location of River Pump Station in the Floodway and SFHA

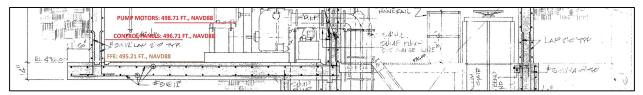



Figure 2. River Pump Station Asset and Flood Frequency Elevations

#### 3.5 Economic Value of Wastewater Service

#### 3.5.1 Population Served

The River Pump Station services a portion of the population of the Town of Hillsborough on a retail basis, providing treatment for customers and annual visitors to the Town. The service population for the River Pump Station (Table 3) is based on the total number of connections and average household size for the Town.

| Facility           | Number of   | Average Household | Total Service |
|--------------------|-------------|-------------------|---------------|
|                    | Connections | Size              | Population    |
| River Pump Station | 5,000       | 2.46              | 12,300        |

Source: Town of Hillsborough, U.S. Census Bureau

#### 3.5.2 Value of Critical Service

FEMA provides standard values for wastewater service in the FEMA BCA Toolkit. The economic value of wastewater service is defined in the Benefit-Cost Analysis Sustainment and Enhancements Standard Economic Value Methodology Report, dated June 2020. The report provides a \$58 value for the economic impact per capita per day for loss of wastewater services in 2020 dollars. It is important to note the following limitations to the value for standard economic impact of loss of wastewater services:

- The service value only considers the treatment of wastewater without affecting the disposal
  of sewage or wastewater. According to the re-engineering methodology record, "FEMA
  assumes that a temporary loss of wastewater service generally entails a total or partial loss
  of capacity to treat wastewater without affecting the residential disposal of sewage or other
  wastewater" (FEMA, August 2011). This means that any impacts on conveyance and the
  resulting consequences such as direct impacts on the service population and environment
   are not captured by this figure.
- Direct impact to residents is not included in the plant's per capita per day value of wastewater service. Examples of direct impacts might include the following, depending on facility type, "temporary lodging for some people, increased transportation costs to sanitation facilities and so on" (FEMA, 2001).
- This value does not include the value of wastewater to residential customers merely to the regional economy. During the re-engineering of FEMA's Benefit-Cost Analysis Toolkit it notes, "no research value could be found which placed an economic value on wastewater service to customers. Therefore, even though no value was assigned for the loss of wastewater to residential customers, it is unlikely that a real economic value of \$0 would be placed on wastewater service. (FEMA, August 2011)"

#### 3.5.2.1 Calculating Critical Service

The value of service provide by the River Pump Station is provided as a per capita per day figure as noted in this section. The per day service of each pump station can be calculated as follows:

Service Population x Service Value Per Capita Per Day=Per Day Service Value

Table 4 indicates the per day value of treatment service provided by each pump station using the FEMA standard value of \$58.00 per capita for wastewater service. This calculation is completed automatically by the BCA Toolkit 6.0.

| Facility           | Estimated Service Population | Per Day Service Value |
|--------------------|------------------------------|-----------------------|
| River Pump Station | 12,300                       | \$713,400             |

Table 4 River Pump Station, FEMA Standard Value Per Day

Source: Town of Hillsborough, FEMA Benefit-Cost Analysis Sustainment and Enhancements Standard Economic Value Methodology Report

#### 3.6 Flood Recurrence Intervals and Stillwater Elevations

For the purpose of the analysis, it is necessary to identify the appropriate recurrence intervals associated with the level of inundation resulting in impact at the River Pump Station. The recurrence interval identifies the probability of the flood depth being met or exceeded in any given year and helps to quantify and prioritize risk and vulnerability. Stillwater flood elevations near the facility are from the North Carolina Flood Risk Information System and FEMA Flood Insurance Study for Orange County, North Carolina and are provided in Figure 3 and Table 5.

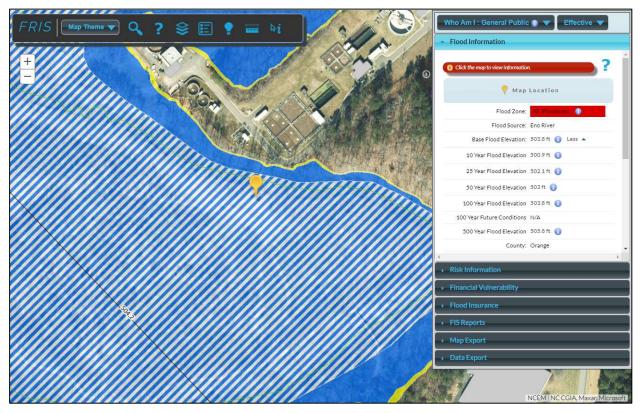



Figure 3 North Carolina Flood Risk Information System, River Pump Station Site

Table 5. Flood Recurrence Intervals with Stillwater Elevations, River Pump Station

| Stillwater Elevations | Predicted X-Percent Annual Chance Elevation<br>(Recurrence Intervals), NAVD88 |           |           |                |           |
|-----------------------|-------------------------------------------------------------------------------|-----------|-----------|----------------|-----------|
|                       | 10-Year                                                                       | 25-Year   | 50-Year   | 100-Year (BFE) | 500-Year  |
| River Pump Station    | 500.9 Ft.                                                                     | 502.1 Ft. | 503.0 Ft. | 503.8 Ft.      | 505.8 Ft. |

Source: North Carolina Flood Risk Information System, Orange County Flood Insurance Study

## 3.7 Determining Losses (Pre-Mitigation)

#### 3.7.1 Direct Physical Damages

Depth damage functions (DDFs) and tables to estimate expected impacts at various flood depths are frequently used in a BCA. A depth damage function is a mathematical relationship between the depth of water and the amount of damage that can be expected from that water. These functions are developed for such structures due to their relative uniformity and design standards.

#### 3.7.1.1 Building and Contents Replacement Values

The FEMA standard Building Replacement Value (BRV) (Appendix D) of \$75.95/sf for light Industrial structures was applied to the total square footage of the River Pump Station pulled from pump station as-built drawings (Appendix E). The FEMA standard contents replacement value of 150% of the building value for light industrial was applied to the building replacement value (Table 6). This value is pulled directly from the FEMA BCA Module and should be considered conservative, as it does not represent the value of the critical assets within the pump station.

| Building              | First Floor<br>Elevation<br>(NAVD88) | Grade<br>Elevation<br>(NAVD88) | Square<br>Footage | Building<br>Replacement<br>Value | Contents<br>Replacement<br>Value |
|-----------------------|--------------------------------------|--------------------------------|-------------------|----------------------------------|----------------------------------|
| River Pump<br>Station | 495.21 Ft.                           | 499.21 Ft.                     | 510               | \$38,734.50                      | \$58,101.75                      |

 Table 6: River Pump Station, Building and Contents Replacement Values

Source: As-Built Drawings, FEMA BCA Guidance Supplement

#### 3.7.1.2 Depth-Damage Functions

For the purposes of this analysis, physical damages to the structure and contents were determined using the USACE Industrial Light DDF from the Flood Module of the BCA Toolkit. The tables below provide the calculated damages used in the BCA (Table 7).

Table 7: Building and Content Damages Calculated at Identified Flood Depths, River Pump Station

| Recurrence<br>Interval<br>(yr.) | Est. Flood<br>Depth (ft.)<br>in Pump<br>Station | Structure<br>Damage (%) | Total Structure<br>Damage (\$) | Contents<br>Damage (%) | Total Content<br>Damage (\$) |
|---------------------------------|-------------------------------------------------|-------------------------|--------------------------------|------------------------|------------------------------|
| 10                              | 2                                               | 16.8%                   | \$6,507.40                     | 31.0%                  | \$18,011.54                  |
| 25                              | 3                                               | 20.9%                   | \$8,095.51                     | 42.0%                  | \$24,402.74                  |
| 50                              | 4                                               | 25.9%                   | \$10,032.24                    | 50.20%                 | \$29,167.08                  |
| 100                             | 4                                               | 25.9%                   | \$10,032.24                    | 50.20%                 | \$29,167.08                  |
| 500                             | 4                                               | 25.9%                   | \$10,032.24                    | 50.20%                 | \$29,167.08                  |

Source: Orange County FIS, BCA Toolkit 6.0, USACE Light Industrial Depth Damage Functions

These damages should be considered a conservative estimate as the analysis performed focused solely on enclosed structure square footage at the site and did not consider other site improvements related to the pump station. Furthermore, the percentage of critical assets that may exist below the flood frequency elevation are often considered to be highly vulnerable and could not be assessed based on the developed methodology. Flood depths anticipated in the pump station are also considered conservative values, as the four-foot flood depth represents the upper bound of historic flooding at the site. In actuality, the flooding would likely be much higher at the 100 or 500-year event.

#### 3.7.2 Loss of Function

#### 3.7.2.1 Assumptions In Calculating Loss of Function

Loss of function calculations do not take into consideration the amount of time it will take for the water to recede because this is unknown. As such, estimates are conservative and are based on the duration engineers identified as necessary and reasonable to pump out any remaining water and assess damage, order parts, and repair the pump station to existing conditions, under optimal restoration conditions (no parts shortages, full resource availability) (Table 8). The majority of impacts to level of service can be expected as a result of damage to electrical equipment. Lead times for repairs to this equipment based on industry standards for what can reasonably be expected.

| River Pump Station – Flood<br>Impact Description | Time Requ<br>Recovery for I<br>Ever<br>(1-5 Day | Minor Flood<br>nts |       | Time Required for Recovery from<br>Significant Flood Events<br>(61 Days Total) |         |         |
|--------------------------------------------------|-------------------------------------------------|--------------------|-------|--------------------------------------------------------------------------------|---------|---------|
|                                                  | Pumps Out                                       | Emergency          | Pumps | Order                                                                          | Repairs | Total   |
|                                                  |                                                 | Restoration        | Out   | Parts                                                                          |         |         |
| Controls damage and                              | 1 Day                                           | 5 Days             | 1 Day | 56 Days                                                                        | 14 Days | 61 Days |
| pump motor damage                                |                                                 |                    |       |                                                                                |         |         |

#### Table 8. Expect Flood Impacts to River Pump Station

#### 3.7.2.2 River Pump Station Anticipated Outage

According to an engineering estimate, the River Pump Station would begin to experience loss of function impacts during the 10-year storm event at the elevation identified. With approximately 1.7 feet of flooding at the site at this recurrence interval, it is anticipated that repair time would take 1 day before the facility is brought back to a fully functioning condition. This estimate is increased as storm intensity and flood depth escalate.

It is important to note that the identified anticipated outage time is drastically less than the standard values provided within the BCA Toolkit 6.0. The New Orleans, Utility, Structure, Long Duration recurrence interval provided in the toolkit identifies loss of function values beginning at 45 days for 1 foot of water (Table 9).

 Table 9: Associated Recurrence Interval, Flood Depth and Anticipated Days of Outage, River Pump Station and the New Orleans, Utility, Structure, Long Duration Loss of Function Days

| Recurrence<br>Interval (yr.) | Est. Flood<br>Depth (ft.) in<br>Pump Station | River Pump Station<br>Anticipated Outage<br>Time (days) | New Orleans, Utility, Structure, Long<br>Duration Loss of Function (days) |
|------------------------------|----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|
| 10                           | 2                                            | 1                                                       | 90                                                                        |
| 25                           | 3                                            | 5                                                       | 135                                                                       |
| 50                           | 4                                            | 61                                                      | 180                                                                       |
| 100                          | 4                                            | 61                                                      | 180                                                                       |
| 500                          | 4                                            | 61                                                      | 180                                                                       |

Source: Orange County FIS, BCA Toolkit 6.0, USACE New Orleans Depth Damage Functions

#### 3.7.2.3 Loss of Function - Wastewater Service

Based on the information discussed in this technical memorandum, the per day service of wastewater service for River Pump Station can be calculated as approximately \$713,400.00. The calculation indicates the per day value of wastewater treatment service provided by the pump station. This calculation is completed automatically by the BCA Toolkit 6.0. With a total value of service per day, using the anticipated outage durations identified above, wastewater service would result in the following loss of function values (Table 10).

| Table 10: Wastewater Service Loss of Function Values per Recurrence Interval and Anticipated Outage Time, |
|-----------------------------------------------------------------------------------------------------------|
| River Pump Station                                                                                        |

| Recurrence<br>Interval (yr.) | Est. Flood<br>Depth (ft.) in<br>Pump Station | River Pump Station<br>Anticipated Outage<br>Time (days) | Wastewater Total Loss of<br>Function Value (\$) |
|------------------------------|----------------------------------------------|---------------------------------------------------------|-------------------------------------------------|
| 10                           | 2                                            | 1                                                       | \$ 713,400                                      |
| 25                           | 3                                            | 5                                                       | \$3,567,000                                     |
| 50                           | 4                                            | 61                                                      | \$43,517,400                                    |
| 100                          | 4                                            | 61                                                      | \$43,517,400                                    |
| 500                          | 4                                            | 61                                                      | \$43,517,400                                    |

Source: Orange County FIS, BCA Toolkit 6.0, USACE New Orleans Depth Damage Functions

#### 3.7.3 Ecosystem Services

Ecosystem service benefits accrue when land use is changed or enhanced by a mitigation activity to provide a higher level of natural benefits. The economic values for the ecosystem services are valued per-acre. The former River Pump Station site, which is approximately 1.5 acres, will be left to return to its pre-developed riparian natural state. For riparian land uses, the economic valuation is \$39,545/acre/year. To determine the total economic service benefits, the BCA Toolkit multiplies the area (acres) by the economic value of the land use type selected as calculated in Table 11.

| Table 11. River Pump Station Relocation, | Project and Maintenance Costs |
|------------------------------------------|-------------------------------|
|------------------------------------------|-------------------------------|

| Acres Returned to Natural | Riparian Economic Value | Total Ecosystem Service |
|---------------------------|-------------------------|-------------------------|
| State                     | (acre/year)             | Benefits                |
| 1.5 acres                 | \$39,545.00             | \$59,317.50             |

Source: FEMA BCA Toolkit 6.0

## 3.8 Level of Protection (Post-Mitigation)

The proposed mitigation project will provide a level of protection above the 500-year flood event. Therefore, it can be anticipated that impacts at the relocated River Pump Station will be similar to the 10-year event if a flood event exceeds the 500-year flood event (Table 12). This identified level of protection is reflected in the BCA at the 500.1-year flood event damages after mitigation.

| Recurrence<br>Interval (yr.) | Total Structure Damage<br>(\$) | Total Contents Damage<br>(\$) | Wastewater Total<br>Loss of<br>Function Value (\$) |
|------------------------------|--------------------------------|-------------------------------|----------------------------------------------------|
| 500.1                        | \$6,507.40                     | \$18,011.54                   | \$ 713,400                                         |

Table 12: Post-Mitigation Level of Protection, River Pump Station

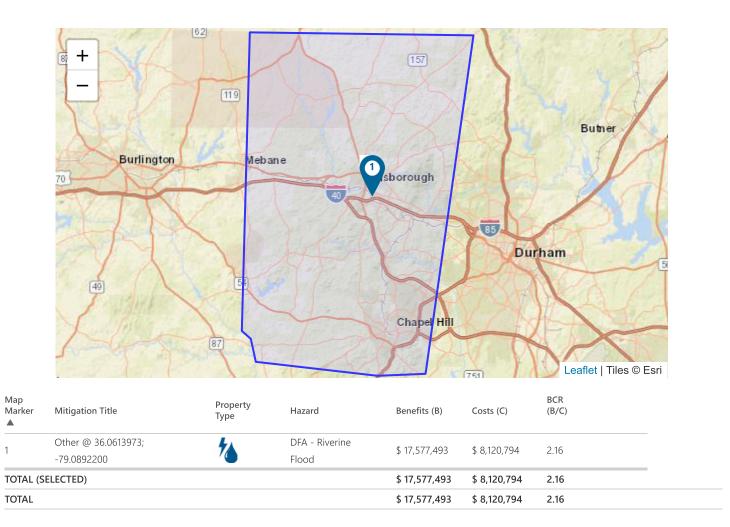
Source: Orange County FIS, BCA Toolkit 6.0, USACE New Orleans Depth Damage Functions

# 4 Analysis Results

The benefit-cost ratio (BCR) for the project is listed in Table 13. Costs included in the determination of the BCR include maintenance costs over the project useful life of the mitigation project. This BCR is considered a conservative estimate as additional benefits such as physical damages to exterior equipment not contained in a structure, equipment below the expected flood frequency elevations; cost of emergency protective measures; wastewater back-up in the collection system; and environmental damages were not used in the analysis. **The total project BCR is 2.16 which demonstrates that the mitigation project is a cost-effective solution**. The BCA Report is provided in Appendix A.

Table 13: River Pump Station Relocation Project, BCA Results

| Description B                         | Benefits     | Costs       | BCR  |
|---------------------------------------|--------------|-------------|------|
| River Pump Station Relocation Project | \$17,577,493 | \$8,120,794 | 2.16 |


Source: BCA Toolkit 6.0

# Appendix A Benefit Cost Analysis Report



#### Benefit-Cost Analysis

Project Name: Town of Hillsborough, River Pump Station Relocation 09142022



| Other @ 36.0613973; -79.0892200 |
|---------------------------------|
| 27278, Orange, North Carolina   |
| 36.0613973, -79.08922           |
| Riverine Flood                  |
| Other                           |
| Utilities                       |
| Professional Expected Damages   |
|                                 |

| Cost Estimation<br>Other @ 36.0613973; -79.0892200 |                    |
|----------------------------------------------------|--------------------|
| Project Useful Life (years):                       | 50                 |
| Project Cost:                                      | \$8,051,790        |
| Number of Maintenance Years:                       | 50 Use Default:Yes |
| Annual Maintenance Cost:                           | \$5,000            |

| Damage Analysis Parameters - Da | amage Frequency Assessment |
|---------------------------------|----------------------------|
| Other @ 36.0613973; -79.0892200 |                            |

| Year of Analysis was Conducted: | 2021               |
|---------------------------------|--------------------|
| Year Property was Built:        | 1978               |
| Analysis Duration:              | 44 Use Default:Yes |

| Utilities Properties<br>Other @ 36.0613973; -79.0892200 |                      |
|---------------------------------------------------------|----------------------|
| Type of Service:                                        | Wastewater           |
| Number of Customers Served:                             | 12,300               |
| Value of Unit of Service (\$/person/day):               | \$58 Use Default:Yes |
| Total Value of Service Per Day (\$/day):                | \$713,400            |

Professional Expected Damages Before Mitigation Other @ 36.0613973; -79.0892200

|                             | WASTEWATER    |                       | OPTIONAL DAMAGES      |                 | VOLUNTE              | ER COSTS       | TOTAL        |
|-----------------------------|---------------|-----------------------|-----------------------|-----------------|----------------------|----------------|--------------|
| Recurrence Interval (years) | Impact (days) | Building Damages (\$) | Contents Damages (\$) | Category 3 (\$) | Number of Volunteers | Number of Days | Damages (\$) |
| 10                          | 1             | 6,507.4               | 18,011.54             | 0               | 0                    | 0              | 737,919      |
| 25                          | 5             |                       | 24,402.74             | 0               | 0                    |                | 3,599,498    |
| 50                          | 61            |                       | 29,167.08             | 0               | 0                    | 0              | 43,556,599   |
| 100                         | 61            |                       | 29,167.08             | 0               | 0                    | 0              | 43,556,599   |
| 500                         | 61            |                       | 29,167.08             | 0               | 0                    | 0              | 43,556,599   |

Annualized Damages Before Mitigation Other @ 36.0613973; -79.0892200

|                             | Annualized Damages and Losses (\$)                      |  |  |
|-----------------------------|---------------------------------------------------------|--|--|
|                             | 97,786                                                  |  |  |
| 9,498                       | 250,425                                                 |  |  |
| 56,599                      | 435,566                                                 |  |  |
| 56,599                      | 348,453                                                 |  |  |
| 56,599                      | 87,109                                                  |  |  |
| Sum Damages and Losses (\$) | Sum Annualized Damages and Losses (\$)                  |  |  |
| 07,215                      | 1,219,339                                               |  |  |
| 9,4<br>56<br>56<br>56       | 998<br>599<br>599<br>599<br>Sum Damages and Losses (\$) |  |  |

Professional Expected Damages After Mitigation Other @ 36.0613973; -79.0892200

|                             | WASTEWATER    |                       | OPTIONAL DAMAGES      |                 | VOLUNTE              | ER COSTS       | TOTAL        |
|-----------------------------|---------------|-----------------------|-----------------------|-----------------|----------------------|----------------|--------------|
| Recurrence Interval (years) | Impact (days) | Building Damages (\$) | Contents Damages (\$) | Category 3 (\$) | Number of Volunteers | Number of Days | Damages (\$) |
| 500.1                       | 1             | 6,507.4               | 18,011.54             | 0               | 0                    | 0              | 737,919      |

#### Annualized Damages After Mitigation Other @ 36.0613973; -79.0892200

| Annualized Recurrence Interval (years) | Damages and Losses (\$)     | Annualized Damages and Losses (\$)     |
|----------------------------------------|-----------------------------|----------------------------------------|
| 500.1                                  | 737,919                     | 1,475                                  |
|                                        | Sum Damages and Losses (\$) | Sum Annualized Damages and Losses (\$) |
|                                        | 737,919                     | 1,475                                  |

#### Standard Benefits - Ecosystem Services Other @ 36.0613973; -79.0892200

| Total Project Area (acres):                  | 1.5      |
|----------------------------------------------|----------|
| Percentage of Urban Green Open Space:        | 0.00%    |
| Percentage of Rural Green Open Space:        | 0.00%    |
| Percentage of Riparian:                      | 100.00%  |
| Percentage of Coastal Wetlands:              | 0.00%    |
| Percentage of Inland Wetlands:               | 0.00%    |
| Percentage of Forests:                       | 0.00%    |
| Percentage of Coral Reefs:                   | 0.00%    |
| Percentage of Shellfish Reefs:               | 0.00%    |
| Percentage of Beaches and Dunes:             | 0.00%    |
| Expected Annual Ecosystem Services Benefits: | \$55,799 |

#### 9/14/22, 10:09 PM

| Benefits-Costs Summary<br>Other @ 36.0613973; -79.0892200 |              |
|-----------------------------------------------------------|--------------|
| Total Standard Mitigation Benefits:                       | \$17,577,493 |
| Total Social Benefits:                                    | \$0          |
| Total Mitigation Project Benefits:                        | \$17,577,493 |
| Total Mitigation Project Cost:                            | \$8,120,794  |
| Benefit Cost Ratio - Standard:                            | 2.16         |
| Benefit Cost Ratio - Standard + Social:                   | 2.16         |

# Appendix B Project Useful Life Table

## APPENDIX D Project Useful Life Summary

|                                                                                | Useful Life (years) |                                                     |                                                                                         |  |
|--------------------------------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Project Type                                                                   | Standard<br>Value   | Acceptable<br>Limits<br>(documentation<br>required) | Comment                                                                                 |  |
| Acquisition/Relocation                                                         |                     | Tequiled)                                           |                                                                                         |  |
| All Structures                                                                 | 100                 | 100                                                 |                                                                                         |  |
| Elevation                                                                      |                     |                                                     |                                                                                         |  |
| Residential Building                                                           | 30                  | 30–50                                               |                                                                                         |  |
| Non-Residential Building                                                       | 25                  | 25-50                                               |                                                                                         |  |
| Public Building                                                                | 50                  | 50-100                                              |                                                                                         |  |
| Historic Buildings                                                             | 50                  | 50-100                                              |                                                                                         |  |
| Structural/Non-Structural Building Project                                     | zt                  |                                                     |                                                                                         |  |
| Residential Building Retrofit                                                  | 30                  | 30                                                  |                                                                                         |  |
| Non-Residential Building Retrofit                                              | 25                  | 25–50                                               |                                                                                         |  |
| Public Building Retrofit                                                       | 50                  | 50-100                                              |                                                                                         |  |
| Historic Building Retrofit                                                     | 50                  | 50-100                                              |                                                                                         |  |
| Roof Diaphragm Retrofit                                                        | 30                  | 30                                                  | Roof hardening and roof clips                                                           |  |
| Tornado Safe Room – Residential                                                | 30                  | 30                                                  |                                                                                         |  |
| Tornado Safe Room – Community                                                  | 30                  | 30–50                                               | Retrofit or small community safe<br>room                                                |  |
|                                                                                |                     |                                                     | $\leq$ 16 people (30 yr), New (50 yr)                                                   |  |
| Non-Structural Building Elements                                               | 30                  | 30                                                  | Ceilings, electrical cabinets,<br>generators, parapet walls, or<br>chimneys             |  |
| Non-Structural Major Equipment                                                 | 15                  | 15–30                                               | Elevators, HVAC, sprinklers                                                             |  |
| Non-Structural Minor Equipment                                                 | 5                   | 5–20                                                | Generic contents, racks, shelves                                                        |  |
| Infrastructure Projects                                                        |                     |                                                     |                                                                                         |  |
| Major Infrastructure (minor localized flood reduction projects)                | 50                  | 35–100                                              |                                                                                         |  |
| Concrete Infrastructure, Flood Walls,<br>Roads, Bridges, Major Drainage System | 50                  | 35–50                                               |                                                                                         |  |
| Culverts (concrete, PVC, CMP, HDPE,                                            | 30                  | 25–50                                               | Culvert <b>with</b> end treatment (i.e., wing walls, end sections, head walls, etc.)    |  |
| etc.)                                                                          | 10                  | 5–20                                                | Culvert <b>without</b> end treatment (i.e., wing walls, end sections, head walls, etc.) |  |
| Pump Stations, Substations, Wastewater                                         | 50                  | 50                                                  | Structures                                                                              |  |
| Systems, or Equipment Such as Generators                                       | 5                   | 5–30                                                | Equipment                                                                               |  |
| Hurricane Storm Shutters                                                       | 15                  | 15–30                                               | Depends on type of storm shutter                                                        |  |
| Utility Mitigation Projects                                                    | 50                  | 50–100                                              | Major (power lines, cable, hardening gas, water, sewer lines, etc.)                     |  |
| Carly Mitgaton Hojous                                                          | 5                   | 5–30                                                | Minor (backflow values, downspout disconnect, etc.)                                     |  |

## APPENDIX D Project Useful Life Summary

|                                               | Useful Life (years)          |                             |                                                          |  |  |
|-----------------------------------------------|------------------------------|-----------------------------|----------------------------------------------------------|--|--|
| Project Type                                  | Standard<br>Value            | Acceptable<br>Limits        | Comment                                                  |  |  |
|                                               |                              | (documentation<br>required) |                                                          |  |  |
| Miscellaneous Equipment Projects              |                              |                             |                                                          |  |  |
| Equipment Purchases                           | 2                            | 2–10                        | Small, portable equipment (e.g., computer)               |  |  |
|                                               | 30                           | 5–30                        | Heavy equipment                                          |  |  |
| Wildfire Mitigation Projects                  | Wildfire Mitigation Projects |                             |                                                          |  |  |
| Defensible Space/Hazardous Fuels<br>Reduction | 4                            | 2–4                         | Brush – Depends on drought conditions                    |  |  |
| Vegetation Management                         | 1                            | 1                           | Grass – Depends on geographic location and precipitation |  |  |
|                                               | 20                           | 3–20                        | Forest canopy – Must be maintained<br>every 3 years      |  |  |
| Ignition-Resistant Construction               | 10                           | 10–30                       | Depends on type of construction and materials used       |  |  |

# Appendix C

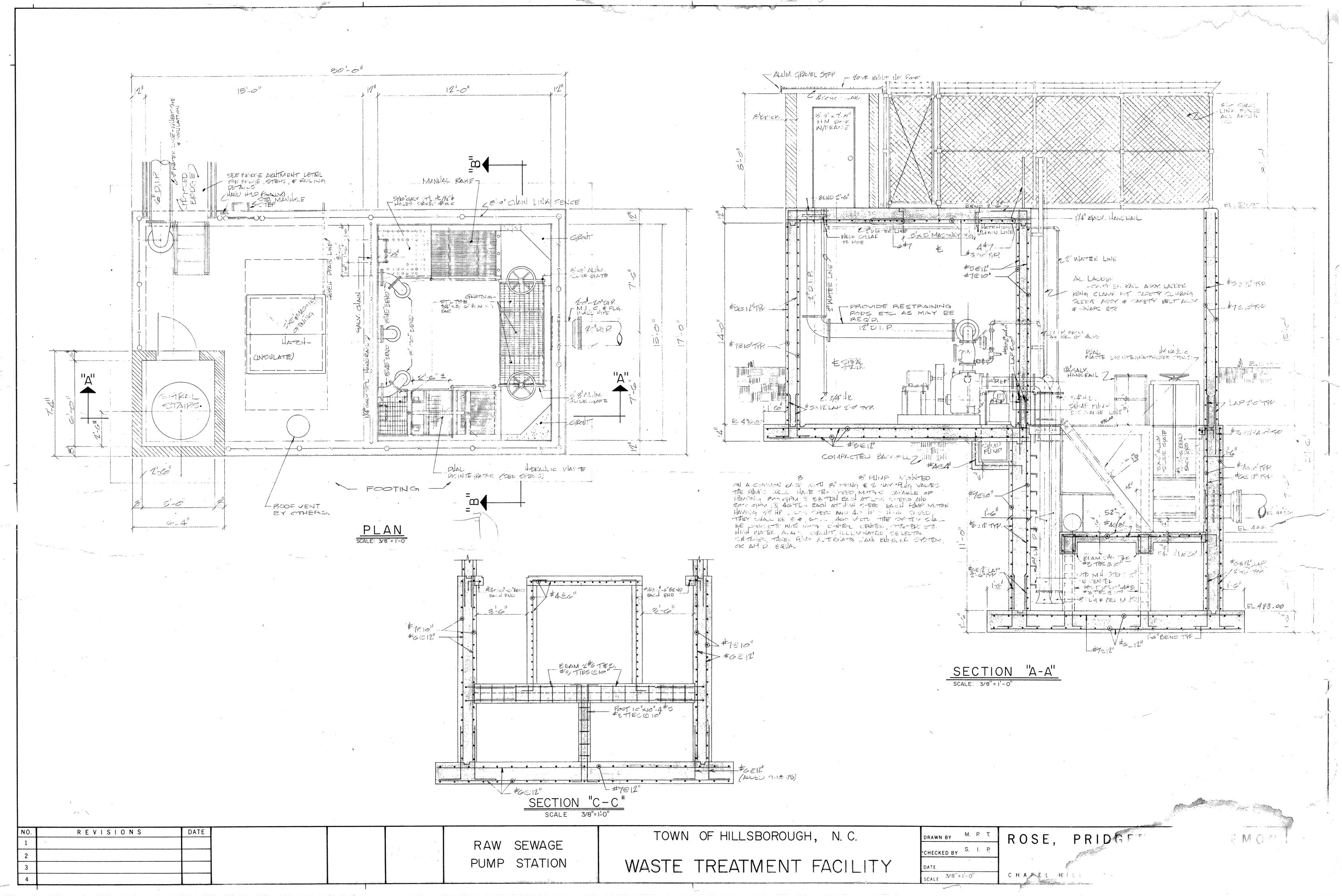
# FEMA Standard Building and Contents Replacement Value

| HAZUS Occupancy Class<br>Description |                                   | Sub-category<br>Means Model Description (Means<br>Model Number) |                                                                                                                                   | Means    | Means<br>Cost/SF |
|--------------------------------------|-----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------|------------------|
| OCC<br>Code                          | OCC Description                   | OCC sub-class                                                   | Woder Number)                                                                                                                     | Typ Size | (2006)           |
| RES1                                 | Single Family Dwelling            | See Table 14-2                                                  |                                                                                                                                   |          |                  |
| RES2                                 | Manufactured Housing              | Manufactured<br>Housing                                         | Manufactured Housing Institute,<br>2004 average sales price and size<br>data for new manufactured home<br>(latest data available) | 1,625    | \$35.75          |
| RES3A                                | Multi Family Dwelling –           | Duplex                                                          | SFR Avg 2 St., MF adj, 3000 SF                                                                                                    | 3,000    | \$79.48          |
| RES3B                                | small                             | Triplex/Quads                                                   | SFR Avg 2 St., MF adj, 3000 SF                                                                                                    | 3,000    | \$86.60          |
| RES3C                                | Multi Family Dwelling –           | 5-9 units                                                       | Apt, 1-3 st, 8,000 SF (M.010)                                                                                                     | 8,000    | \$154.31         |
| RES3D                                | medium                            | 10-19 units                                                     | Apt., 1-3 st., 12,000 SF (M.010)                                                                                                  | 12,000   | \$137.67         |
| RES3E                                | Multi Family Dwelling –           | 20-49 units                                                     | Apt., 4-7 st., 40,000 SF (M.020)                                                                                                  | 40,000   | \$135.39         |
| RES3F                                | large                             | 50+ units                                                       | Apt., 4-7 st., 60,000 SF (M.020)                                                                                                  | 60,000   | \$131.93         |
| RES4                                 | Temp. Lodging                     | Hotel, medium                                                   | Hotel, 4-7 st., 135,000 SF (M.350)                                                                                                | 135,000  | \$132.52         |
| RES5                                 | Institutional Dormitory           | Dorm, medium                                                    | College Dorm, 2-3 st, 25,000 SF<br>(M.130)                                                                                        | 25,000   | \$150.96         |
| RES6                                 | Nursing Home                      | Nursing home                                                    | Nursing Home, 2 st., 25,000 SF<br>(M.450)                                                                                         | 25,000   | \$126.95         |
| COM1                                 | Retail Trade                      | Dept Store, 1 st                                                | Store, Dept., 1 st., 110,000 SF<br>(M.610)                                                                                        | 110,000  | \$82.63          |
| COM2                                 | Wholesale Trade                   | Warehouse, medium                                               | Warehouse, 30,000 SF (M.690)                                                                                                      | 30,000   | \$75.95          |
| COM3                                 | Personal and Repair<br>Services   | Garage, Repair                                                  | Garage, Repair, 10,000 SF (M.290)                                                                                                 | 10,000   | \$102.34         |
| COM4                                 | Prof./ Tech./Business<br>Services | Office, medium                                                  | Office, 5-10 st., 80,000 SF (M.470)                                                                                               | 80,000   | \$133.43         |
| COM5                                 | Banks                             | Bank                                                            | Bank, 1 st., 4100 SF (M.050)                                                                                                      | 4,100    | \$191.53         |
| COM6                                 | Hospital                          | Hospital, medium                                                | Hospital, 2-3 st., 55,000 SF (M.330)                                                                                              | 55,000   | \$224.29         |

 Table 14.1 Default Full Replacement Cost Models (Means, 2006)

| HAZUS Occupancy Class<br>Description |                               | Sub-category           | Means Model Description (Means              | Means    | Means<br>Cost/SF |
|--------------------------------------|-------------------------------|------------------------|---------------------------------------------|----------|------------------|
| OCC<br>Code                          | OCC Description               | OCC sub-class          | Model Number)                               | Typ Size | (2006)           |
| COM7                                 | Medical Office/Clinic         | Med. Office,<br>medium | Medical office, 2 st., 7,000 SF<br>(M.410)  | 7,000    | \$164.18         |
| COM8                                 | Entertainment &<br>Recreation | Restaurant             | Restaurant, 1 st., 5,000 SF (M.530)         | 5,000    | \$170.51         |
| COM9                                 | Theaters                      | Movie Theatre          | Movie Theatre, 12,000 SF (M.440)            | 12,000   | \$122.05         |
| COM10                                | Parking                       | Parking garage         | Garage, Pkg, 5 st., 145,000 SF<br>(M.270)   | 145,000  | \$43.72          |
| IND1                                 | Heavy                         | Factory, small         | Factory, 1 st., 30,000 SF (M.200)           | 30,000   | \$88.28          |
| IND2                                 | Light                         | Warehouse, medium      | Warehouse, 30,000 SF (M.690)                | 30,000   | \$75.95          |
| IND3                                 | Food/Drugs/Chemicals          | College Laboratory     | College Lab, 1 st., 45,000 SF<br>(M.150)    | 45,000   | \$145.07         |
| IND4                                 | Metals/Minerals<br>Processing | College Laboratory     | College Lab, 1 st., 45,000 SF<br>(M.150)    | 45,000   | \$145.07         |
| IND5                                 | High Technology               | College Laboratory     | College Lab, 1 st., 45,000 SF<br>(M.150)    | 45,000   | \$145.07         |
| IND6                                 | Construction                  | Warehouse, medium      | Warehouse, 30,000 SF (M.690)                | 30,000   | \$75.95          |
| AGR1                                 | Agriculture                   | Warehouse, medium      | Warehouse, 30,000 SF (M.690)                | 30,000   | \$75.95          |
| REL1                                 | Church                        | Church                 | Church, 1 st., 17,000 SF (M.090)            | 17,000   | \$138.57         |
| GOV1                                 | General Services              | Town Hall, small       | Town Hall, 1 st., 11,000 SF (M.670)         | 11,000   | \$107.28         |
| GOV2                                 | Emergency Response            | Police Station         | Police Station, 2 st., 11,000 SF<br>(M.490) | 11,000   | \$166.59         |
| EDU1                                 | Schools/Libraries             | High School            | School, High, 130,000 SF (M.570)            | 130,000  | \$115.31         |
| EDU2                                 | Colleges/Universities         | College Classroom      | College Class. 2-3 st, 50,000 SF<br>(M.120) | 50,000   | \$144.73         |

#### Table 14.2 Default Full Replacement Cost Models (Means, 2006) (Continued)


| No. | Hazus Occupancy<br>Class Code | Hazus Occupancy Class<br>Description        | Contents Value (% of BRV) |  |  |  |
|-----|-------------------------------|---------------------------------------------|---------------------------|--|--|--|
|     | Residential                   |                                             |                           |  |  |  |
| 1   | RES1                          | Single Family Dwelling                      | 50                        |  |  |  |
| 2   | RES2                          | Mobile Home                                 | 50                        |  |  |  |
| 3   | RES3                          | Multi Family Dwelling                       | 50                        |  |  |  |
| 4   | RES4                          | Temporary Lodging                           | 50                        |  |  |  |
| 5   | RES5                          | Institutional Dormitory                     | 50                        |  |  |  |
| 6   | RES6                          | Nursing Home                                | 50                        |  |  |  |
|     |                               | Commercial                                  |                           |  |  |  |
| 7   | COM1                          | Retail Trade                                | 100                       |  |  |  |
| 8   | COM2                          | Wholesale Trade                             | 100                       |  |  |  |
| 9   | COM3                          | Personal and Repair Services                | 100                       |  |  |  |
| 10  | COM4                          | Professional/Technical/Business<br>Services | 100                       |  |  |  |
| 11  | COM5                          | Banks                                       | 100                       |  |  |  |
| 12  | COM6                          | Hospital                                    | 150                       |  |  |  |
| 13  | COM7                          | Medical Office/Clinic                       | 150                       |  |  |  |
| 14  | COM8                          | Entertainment & Recreation                  | 100                       |  |  |  |
| 15  | COM9                          | Theaters                                    | 100                       |  |  |  |
| 16  | COM10                         | Parking                                     | 50                        |  |  |  |
|     |                               | Industrial                                  |                           |  |  |  |
| 17  | IND1                          | Heavy                                       | 150                       |  |  |  |
| 18  | IND2                          | Light                                       | 150                       |  |  |  |
| 19  | IND3                          | Food/Drugs/Chemicals                        | 150                       |  |  |  |
| 20  | IND4                          | Metals/Minerals Processing                  | 150                       |  |  |  |
| 21  | IND5                          | High Technology                             | 150                       |  |  |  |
| 22  | IND6                          | Construction                                | 100                       |  |  |  |
|     |                               | Agriculture                                 |                           |  |  |  |
| 23  | AGR1                          | Agriculture                                 | 100                       |  |  |  |
|     |                               | <b>Religion/Non-Profit</b>                  |                           |  |  |  |
| 24  | REL1                          | Church/Membership Organization              | 100                       |  |  |  |
|     |                               | Government                                  |                           |  |  |  |
| 25  | GOV1                          | General Services                            | 100                       |  |  |  |
| 26  | GOV2                          | Emergency Response                          | 150                       |  |  |  |
|     |                               | Education                                   |                           |  |  |  |
| 27  | EDU1                          | Schools/Libraries                           | 100                       |  |  |  |
| 28  | EDU2                          | Colleges/Universities                       | 150                       |  |  |  |

The exception to these defaults is when users select residential USACE Generic DDFs. The BCA software uses 100% of the BRV for the contents replacement value as the default when USACE Generic DDFs are selected because the content-to-structure value ratio is already incorporated in the contents DDF.

When conducting a Flood module analysis, the user normally uses the default contents values provided by the BCA software. The default contents values are based on the DDF selection (residential or non-residential/primary use, number of stories, basement type, and default or generic). However, in some situations, the primary building use for non-residential buildings

## Appendix D

### **River Pump Station As-built Drawings**



### Appendix E

### Peak Stream Flow Events - Eno River



**USGS Home Contact USGS** Search USGS

### National Water Information System: Web Interface

USGS Water Resources

Data Category: Surface Water ×

**Geographic Area:** United States

GO

### Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access realtime water data from over 13,500 stations nationwide.
- Full News

Peak Streamflow for the Nation

### **USGS 02085000 ENO RIVER AT HILLSBOROUGH, NC**

Available data for this site Surface-water: Peak streamflow ✓ GO

Orange County, North Carolina

Hydrologic Unit Code 03020201

Latitude 36°04'16", Longitude 79°05'44" NAD83

Drainage area 66 square miles

Gage datum 487.44 feet above NGVD29 **Output formats** 

| output formats           |  |  |  |  |
|--------------------------|--|--|--|--|
| <u>Table</u>             |  |  |  |  |
| Graph                    |  |  |  |  |
| Tab-separated file       |  |  |  |  |
| peakfq (watstore) format |  |  |  |  |
| Reselect output format   |  |  |  |  |

| Water<br>Year | Date       | Gage<br>Height<br>(feet) | Stream-<br>flow<br>(cfs)       |
|---------------|------------|--------------------------|--------------------------------|
|               |            |                          |                                |
| 1996          | 1996-09-06 | 21.13                    | 10,800                         |
| 1945          | 1945-09-18 | 20.01                    | 8,980                          |
| 1930          | 1929-10-02 | 18.00 <sup>5</sup>       | 6,750                          |
| 1965          | 1965-07-11 | 17.58                    | 5,970                          |
| 1993          | 1993-03-04 | 17.58                    | 5,970                          |
| 1998          | 1998-03-19 | 17.46                    | <mark>5,600<sup>5</sup></mark> |
| 1944          | 1944-07-15 | 17.30                    | 5,530                          |

| Water<br>Year | Date       | Height                | Stream-<br>flow<br>(cfs) |
|---------------|------------|-----------------------|--------------------------|
|               |            |                       |                          |
| 1995          | 1995-06-29 | 17.10                 | 5,180                    |
| 1939          | 1939-08-18 | 16.90                 | 4,910                    |
| 2017          | 2017-06-20 | 17.00                 | 4,730 <sup>5</sup>       |
| 2019          | 2019-04-13 | (16.98 <sup>2</sup> ) | 4,710 <sup>5</sup>       |
| 2003          | 2003-03-20 | 16.61                 | 4,580 <sup>5</sup>       |
| 2008          | 2008-09-06 | 16.57                 | 4,530 <sup>5</sup>       |
| 1946          | 1946-07-10 | 16.43                 | 4,280                    |
| 1999          | 1999-09-16 | 16.06                 | 4,190 <sup>5</sup>       |
| 1960          | 1960-05-28 | 16.24                 | 4,070                    |
| 1987          | 1987-03-01 | 16.11                 | 4,060                    |
| 1997          | 1997-04-29 | 15.83                 | 3,980 <sup>5</sup>       |
| 1928          | 1928-09-19 | 16.00 <sup>5</sup>    | 3,880                    |
| 1931          | 1931-05-21 | 16.26                 | 3,880                    |
| 1952          | 1952-03-04 | 16.04                 | 3,880                    |
| 1986          | 1985-11-21 | 15.67                 | 3,730                    |
| 1936          | 1936-08-28 | 15.95                 | 3,670                    |
| 2000          | 2000-03-17 | 15.74                 | 3,640 <sup>5</sup>       |
| 1989          | 1989-02-21 | 15.50                 | 3,620                    |
| 1932          | 1932-03-06 | 15.70 <sup>5</sup>    | 3,610                    |
| 1938          | 1938-07-24 | 15.80                 | 3,610                    |
| 1955          | 1955-08-17 | 15.60                 | 3,530                    |
| 1963          | 1963-03-06 | 15.49                 | 3,450                    |
| 1935          | 1934-12-01 | 14.90 <sup>5</sup>    | 3,260                    |
| 1966          | 1966-02-28 | 15.17                 | 3,230                    |
| 1992          | 1992-01-04 | 14.78                 | 3,200                    |
| 1957          | 1957-02-01 | 15.05                 | 3,120                    |
| 1949          | 1948-11-28 | 14.86                 | 3,060                    |
| 2010          | 2010-02-06 | 14.93                 | 3,060 <sup>5</sup>       |
| 1962          | 1962-01-06 | 14.88                 | 3,050                    |
| 2020          | 2020-02-06 | 15.10                 | 3,030 <sup>5</sup>       |
| 2016          | 2015-12-23 | 14.83                 | 3,010 <sup>5</sup>       |
| 1953          | 1953-03-24 | 14.84                 | 3,000                    |

| Water<br>Year | Date       | Gage<br>Height<br>(feet) | Stream-<br>flow<br>(cfs) |
|---------------|------------|--------------------------|--------------------------|
|               |            |                          |                          |
| 1994          | 1994-03-02 | 14.22                    | 2,950                    |
| 2018          | 2018-09-17 | 14.86                    | 2,890 <sup>5,9</sup>     |
| 1991          | 1991-01-12 | 13.66                    | 2,730                    |
| 2005          | 2005-01-14 | 13.85                    | 2,540 <sup>5</sup>       |
| 2014          | 2014-03-07 | 13.63                    | 2,530 <sup>5</sup>       |
| 1937          | 1937-01-20 | 13.40 <sup>5</sup>       | 2,500                    |
| 1961          | 1961-02-08 | 13.56                    | 2,440                    |
| 1990          | 1990-04-03 | 12.70                    | 2,390                    |
| 1956          | 1956-03-16 | 13.07                    | 2,270                    |
| 1958          | 1958-04-06 | 13.10                    | 2,270                    |
| 1934          | 1934-04-09 | 13.00                    | 2,240                    |
| 2001          | 2001-03-30 | 12.95                    | 2,200 <sup>5</sup>       |
| 1941          | 1940-11-14 | 12.38                    | 2,180                    |
| 1948          | 1948-02-14 | 12.65                    | 2,110                    |
| 1970          | 1970-07-10 | 12.08                    | 1,950                    |
| 2013          | 2013-08-21 | 12.09                    | 1,930 <sup>5</sup>       |
| 2007          | 2006-11-22 | 11.81                    | 1,850 <sup>5</sup>       |
| 1940          | 1940-02-07 | 11.45                    | 1,830                    |
| 1942          | 1942-05-16 | 11.26                    | 1,800                    |
| 1964          | 1964-04-08 | 11.36                    | 1,760                    |
| 1933          | 1932-11-26 | 11.10                    | 1,690                    |
| 1969          | 1969-06-16 | 11.02                    | 1,670                    |
| 1943          | 1942-11-24 | 10.77                    | 1,650                    |
| 1954          | 1954-01-22 | 10.94                    | 1,640                    |
| 1971          | 1971-05-16 | 10.81                    | 1,620                    |
| 2012          | 2012-09-18 | 10.96                    | 1,620 <sup>5</sup>       |
| 1947          | 1947-01-14 | 10.84                    | 1,610                    |
| 1959          | 1958-12-28 | 10.70                    | 1,600                    |
| 1951          | 1951-04-08 | 10.61                    | 1,570                    |
| 2004          | 2004-08-30 | 10.70                    | 1,560 <sup>5</sup>       |
| 1950          | 1949-10-30 | 10.32                    | 1,500                    |
| 2006          | 2006-06-25 | 9.57                     | 1,310 <sup>5</sup>       |

| Water<br>Year | Date       | Height fl | tream-<br>ow<br>cfs) |
|---------------|------------|-----------|----------------------|
|               |            |           |                      |
| 2009          | 2009-03-01 | 8.88      | 1,180 <sup>5</sup>   |
| 1968          | 1968-03-12 | 8.44      | 1,150                |
| 1988          | 1988-08-29 | 7.97      | 1,150                |
| 2015          | 2014-12-24 | 7.12      | 925 <sup>5</sup>     |
| 1967          | 1967-02-21 | 6.70      | 804                  |
| 2002          | 2002-01-20 | 4.67      | 454 <sup>5</sup>     |
| 2011          | 2011-03-30 | 4.51      | 424 <sup>5</sup>     |

### ?

Peak Gage-Height Qualification Codes.

- 2 -- Gage height not the maximum for the year
- 5 -- Gage height is an estimate

### ?

Peak Streamflow Qualification Codes.

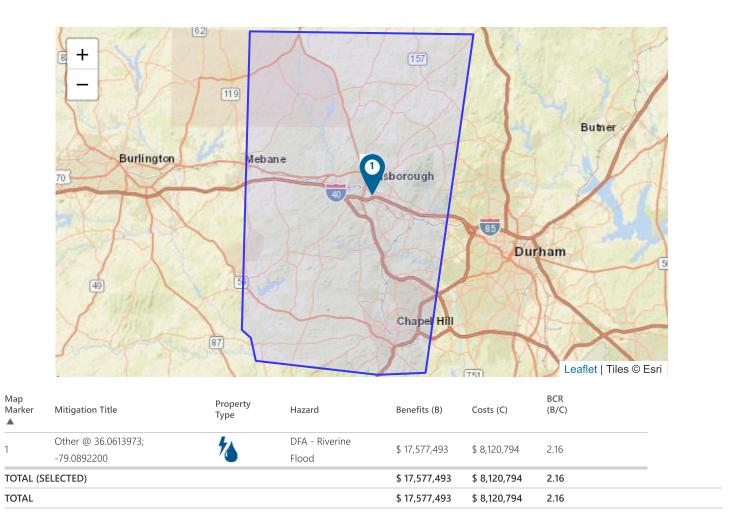
- 5 -- Discharge affected to unknown degree by Regulation or Diversion
- 9 -- Discharge due to Snowmelt, Hurricane, Ice-Jam or Debris Dam breakup

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Surface Water for USA: Peak Streamflow URL: https://nwis.waterdata.usgs.gov/nwis/peak?




Page Contact Information: USGS Water Data Support Team Page Last Modified: 2021-11-16 15:22:05 EST 0.2 0.19 nadww02

# Attachment D. BCA Report



#### Benefit-Cost Analysis

Project Name: Town of Hillsborough, River Pump Station Relocation 09142022



| Property Configuration  |                                 |
|-------------------------|---------------------------------|
| Property Title:         | Other @ 36.0613973; -79.0892200 |
| Property Location:      | 27278, Orange, North Carolina   |
| Property Coordinates:   | 36.0613973, -79.08922           |
| Hazard Type:            | Riverine Flood                  |
| Mitigation Action Type: | Other                           |
| Property Type:          | Utilities                       |
| Analysis Method Type:   | Professional Expected Damages   |
|                         |                                 |

| Cost Estimation<br>Other @ 36.0613973; -79.0892200 |                    |
|----------------------------------------------------|--------------------|
| Project Useful Life (years):                       | 50                 |
| Project Cost:                                      | \$8,051,790        |
| Number of Maintenance Years:                       | 50 Use Default:Yes |
| Annual Maintenance Cost:                           | \$5,000            |

| Damage Analysis Parameters - Damage Frequency Assessment |  |
|----------------------------------------------------------|--|
| Other @ 36.0613973; -79.0892200                          |  |

| Year of Analysis was Conducted: | 2021               |
|---------------------------------|--------------------|
| Year Property was Built:        | 1978               |
| Analysis Duration:              | 44 Use Default:Yes |

| Utilities Properties<br>Other @ 36.0613973; -79.0892200 |                      |
|---------------------------------------------------------|----------------------|
| Other @ 50.0015575, -15.0052200                         |                      |
| Type of Service:                                        | Wastewater           |
| Number of Customers Served:                             | 12,300               |
| Value of Unit of Service (\$/person/day):               | \$58 Use Default:Yes |
| Total Value of Service Per Day (\$/day):                | \$713,400            |

Professional Expected Damages Before Mitigation Other @ 36.0613973; -79.0892200

|                             | WASTEWATER    |                       | OPTIONAL DAMAGES      |                 | VOLUNTE              | ER COSTS       | TOTAL        |
|-----------------------------|---------------|-----------------------|-----------------------|-----------------|----------------------|----------------|--------------|
| Recurrence Interval (years) | Impact (days) | Building Damages (\$) | Contents Damages (\$) | Category 3 (\$) | Number of Volunteers | Number of Days | Damages (\$) |
| 10                          | 1             | <i>.</i>              | 18,011.54             | 0               | 0                    | 0              | 737,919      |
| 25                          | 5             | 8,095.51              | 24,402.74             | 0               | 0                    | 0              | 3,599,498    |
| 50                          |               | 10,032.24             | 29,167.08             | 0               | 0                    | 0              | 43,556,599   |
| 100                         | 61            | 10,032.24             | 29,167.08             | 0               | 0                    | 0              | 43,556,599   |
| 500                         | 61            | 10,032.24             | 29,167.08             | 0               | 0                    | 0              | 43,556,599   |

Annualized Damages Before Mitigation Other @ 36.0613973; -79.0892200

|                             | Annualized Damages and Losses (\$)                      |
|-----------------------------|---------------------------------------------------------|
|                             | 97,786                                                  |
| 9,498                       | 250,425                                                 |
| 56,599                      | 435,566                                                 |
| 56,599                      | 348,453                                                 |
| 56,599                      | 87,109                                                  |
| Sum Damages and Losses (\$) | Sum Annualized Damages and Losses (\$)                  |
| 07,215                      | 1,219,339                                               |
| 9,4<br>56<br>56<br>56       | 998<br>599<br>599<br>599<br>Sum Damages and Losses (\$) |

Professional Expected Damages After Mitigation Other @ 36.0613973; -79.0892200

|                             | WASTEWATER    | OPTIONAL DAMAGES      |                       |                 | VOLUNTE              | TOTAL          |              |
|-----------------------------|---------------|-----------------------|-----------------------|-----------------|----------------------|----------------|--------------|
| Recurrence Interval (years) | Impact (days) | Building Damages (\$) | Contents Damages (\$) | Category 3 (\$) | Number of Volunteers | Number of Days | Damages (\$) |
| 500.1                       |               | 6,507.4               | 18,011.54             | 0               | 0                    | 0              | 737,919      |

#### Annualized Damages After Mitigation Other @ 36.0613973; -79.0892200

| Annualized Recurrence Interval (years) | Damages and Losses (\$)     | Annualized Damages and Losses (\$)     |  |
|----------------------------------------|-----------------------------|----------------------------------------|--|
| 500.1                                  | 737,919                     | 1,475                                  |  |
|                                        | Sum Damages and Losses (\$) | Sum Annualized Damages and Losses (\$) |  |
|                                        | 737,919                     | 1,475                                  |  |

#### Standard Benefits - Ecosystem Services Other @ 36.0613973; -79.0892200

| Total Project Area (acres):                  | 1.5      |
|----------------------------------------------|----------|
| Percentage of Urban Green Open Space:        | 0.00%    |
| Percentage of Rural Green Open Space:        | 0.00%    |
| Percentage of Riparian:                      | 100.00%  |
| Percentage of Coastal Wetlands:              | 0.00%    |
| Percentage of Inland Wetlands:               | 0.00%    |
| Percentage of Forests:                       | 0.00%    |
| Percentage of Coral Reefs:                   | 0.00%    |
| Percentage of Shellfish Reefs:               | 0.00%    |
| Percentage of Beaches and Dunes:             | 0.00%    |
| Expected Annual Ecosystem Services Benefits: | \$55,799 |

#### 9/14/22, 10:09 PM

| Benefits-Costs Summary<br>Other @ 36.0613973; -79.0892200 |              |
|-----------------------------------------------------------|--------------|
| Total Standard Mitigation Benefits:                       | \$17,577,493 |
| Total Social Benefits:                                    | \$0          |
| Total Mitigation Project Benefits:                        | \$17,577,493 |
| Total Mitigation Project Cost:                            | \$8,120,794  |
| Benefit Cost Ratio - Standard:                            | 2.16         |
| Benefit Cost Ratio - Standard + Social:                   | 2.16         |

# Attachment E. Population Served



September 9, 2022

Steve McGugan Division of Emergency Management North Carolina Department of Public Safety 4236 Mail Service Center Raleigh, North Carolina 27699-4238

Re: Town of Hillsborough - River Pumping Station Relocation from Floodway FEMA BRIC Project BRIC2021-Hillsborough-EMA-2021-BR-005-0054-NTRResponse – Population Support

Dear Mr. McGugan:

Pursuant to FEMA's technical review of the River Pumping Station Relocation from Floodway subapplication, let this letter serve as documentation to support the population served for this project.

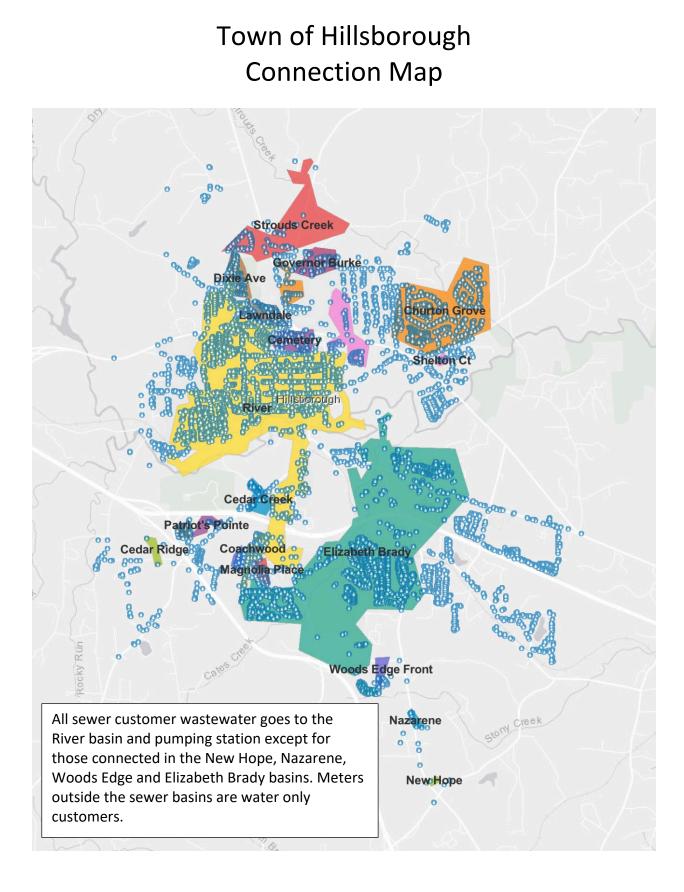
The River Pump Station services a majority portion of the population of the Town of Hillsborough on a retail basis, providing treatment for customers and annual visitors to the Town. We estimate this population to be 12,300, based on approximately 5,000 connections and an average household size of 2.46 according to the US Census. This figure was determined by the total number of sewer customers on the town system plus an allowance for daily visitors to our commercial establishments and recreational facilities and that this pumping station conveys approximately 75% of the town's wastewater.

Thank you for considering our sub-application and please let me know if there is anything further.

Sincerely,

K. Marie Strandwitz, PE Utilities Director

# Attachment F. US Census Data


|                                                                                     | Hillsborough town, North Carolina |                 |                       |                 |                      |                 |           |  |
|-------------------------------------------------------------------------------------|-----------------------------------|-----------------|-----------------------|-----------------|----------------------|-----------------|-----------|--|
|                                                                                     | Total                             |                 | Married-couple family |                 | Male householder, no |                 | Female ho |  |
| Label                                                                               | Estimate                          | Margin of Error | Estimate              | Margin of Error | Estimate             | Margin of Error | Estimate  |  |
| HOUSEHOLDS                                                                          |                                   |                 |                       |                 |                      |                 |           |  |
| Total households                                                                    | 2,739                             | ±236            | 1,352                 | ±172            | 66                   | ±48             | 250       |  |
| Average household size                                                              | <mark>2.46</mark>                 | ±0.21           | 3.22                  | ±0.30           | 4.24                 | ±2.38           | 3.05      |  |
| FAMILIES                                                                            |                                   |                 |                       |                 |                      |                 |           |  |
| Total families                                                                      | 1,668                             | ±152            | 1,352                 | ±172            | 66                   | ±48             | 250       |  |
| Average family size                                                                 | 3.18                              | ±0.25           | 3.22                  | ±0.30           | 3.42                 | ±1.85           | 2.85      |  |
| AGE OF OWN CHILDREN                                                                 |                                   |                 |                       |                 |                      |                 |           |  |
| Households with own children of the householder under 18 years                      | 882                               | ±117            | 642                   | ±115            | 37                   | ±34             | 203       |  |
| Under 6 years only                                                                  | 33.4%                             | ±13.5           | 34.3%                 | ±15.0           | 40.5%                | ±51.5           | 29.6%     |  |
| Under 6 years and 6 to 17 years<br>6 to 17 years only                               | 12.0%                             | ±10.2<br>±11.5  | 16.5%<br>49.2%        | ±14.0<br>±13.2  | 0.0%                 | ±50.6<br>±51.5  | 0.0%      |  |
| Total households                                                                    | 2,739                             | ±236            | 1,352                 | ±13.2<br>±172   | 66                   | ±48             | 250       |  |
| SELECTED HOUSEHOLDS BY TYPE<br>Households with one or more<br>people under 18 years | 33.3%                             | ±5.2            | 47.5%                 | ±8.5            | 56.1%                | ±37.0           | 88.0%     |  |
| Households with one or more                                                         | 36.6%                             | ±6.7            | 34.8%                 | ±8.0            | 43.9%                | ±37.0           | 16.4%     |  |
| people 60 years and over                                                            | 30.6%                             | ±6.5            |                       |                 |                      |                 |           |  |
| Householder living alone                                                            | 31.3%<br>11.7%                    | ±0.5<br>±4.7    | (X)                   | (X)             | (X)                  | (X)             | (X)       |  |
| 65 years and over<br>UNITS IN STRUCTURE                                             | 11.1%                             | ±4./            | (X)                   | (X)             | (X)                  | (X)             | (X)       |  |
|                                                                                     | 75 10/                            |                 | 01.20/                |                 | 77.20/               | 121.0           | FO 00/    |  |
| 1-unit structures                                                                   | 75.1%                             | ±5.0            | 91.2%                 | ±5.5            | 77.3%                | ±31.6           | 50.8%     |  |
| 2-or-more-unit structures                                                           | 21.5%                             | ±5.0            | 4.9%                  | ±3.4            | 22.7%                | ±31.6           | 49.2%     |  |
| Mobile homes and all other<br>types of units                                        | 3.4%                              | ±3.4            | 3.9%                  | ±4.6            | 0.0%                 | ±37.9           | 0.0%      |  |

|                                                                | İ               |                     |                 |  |
|----------------------------------------------------------------|-----------------|---------------------|-----------------|--|
|                                                                |                 | 1                   |                 |  |
|                                                                | useholder, no   | Nonfamily household |                 |  |
| Label                                                          | Margin of Error | Estimate            | Margin of Error |  |
| HOUSEHOLDS                                                     |                 |                     |                 |  |
| Total households                                               | ±91             | 1,071               | ±230            |  |
| Average household size                                         | ±0.52           | 1.24                | ±0.11           |  |
| FAMILIES                                                       |                 |                     |                 |  |
| Total families                                                 | ±91             | (X)                 | (X)             |  |
| Average family size                                            | ±0.39           | (X)                 | (X)             |  |
| AGE OF OWN CHILDREN                                            |                 |                     |                 |  |
| Households with own children of the householder under 18 years | ±86             | (X)                 | (X)             |  |
| Under 6 years only                                             | ±24.8           | (X)                 | (X)             |  |
| Under 6 years and 6 to 17 years<br>6 to 17 years only          | ±15.8<br>±24.8  | (X)<br>(X)          | (X)<br>(X)      |  |
| Total households                                               | ±91             | 1,071               | ±230            |  |
| SELECTED HOUSEHOLDS BY TYPE<br>Households with one or more     |                 |                     |                 |  |
| people under 18 years                                          | ±13.4           | 1.1%                | ±1.8            |  |
| Households with one or more people 60 years and over           | ±16.3           | 43.0%               | ±13.2           |  |
| Householder living alone                                       | (X)             | 80.0%               | ±9.4            |  |
| 65 years and over                                              | (X)             | 29.9%               | ±11.1           |  |
| UNITS IN STRUCTURE                                             |                 |                     |                 |  |
| 1-unit structures                                              | ±24.2           | 60.2%               | ±10.8           |  |
| 2-or-more-unit structures                                      | ±24.2           | 35.9%               | ±10.4           |  |
| Mobile homes and all other types of units                      | ±13.0           | 3.8%                | ±6.2            |  |

|                               | Hillsborough town, North Carolina |                 |          |                 |           |                 |          |
|-------------------------------|-----------------------------------|-----------------|----------|-----------------|-----------|-----------------|----------|
|                               | Total Married-couple fam          |                 |          | ouple family    | Male hous | Female ho       |          |
| Label                         | Estimate                          | Margin of Error | Estimate | Margin of Error | Estimate  | Margin of Error | Estimate |
| HOUSING TENURE                |                                   |                 |          |                 |           |                 |          |
| Owner-occupied housing units  | 65.3%                             | ±5.8            | 90.7%    | ±4.4            | 19.7%     | ±28.5           | 66.4%    |
| Renter-occupied housing units | 34.7%                             | ±5.8            | 9.3%     | ±4.4            | 80.3%     | ±28.5           | 33.6%    |

|                               | useholder, no   | Nonfamily | y household     |
|-------------------------------|-----------------|-----------|-----------------|
| Label                         | Margin of Error | Estimate  | Margin of Error |
| HOUSING TENURE                |                 |           |                 |
| Owner-occupied housing units  | ±22.8           | 35.8%     | ±12.9           |
| Renter-occupied housing units | ±22.8           | 64.2%     | ±12.9           |

Attachment G. Wastewater Map



# Attachment H. Total Area of Environmental Benefits

Old River Pump Station Ground Disturbance Map

0.01

0

0.03 Miles

Ground Disturbance Area: 67,627.71 sq. ft.

> Current River Pump Station

Eno River

Ground Disturbance Extent

Esri Community Maps Contributors, Town of Cary, Land Records/GlS/Addressing, State of North Carolina DOT, © OpenStreetMap, Microsoft, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, NC CGIA, Maxar, Microsoft

0